
TIGHT-N[™] Tendon Docking Anchor

Designed to protect the tendon from wrap and laceration without compromising strength.

Brochure

Current Challenges within Biceps Tenodesis

Current techniques fall short.

Surgeons are in search of a reproducible, fast, easy technique with good fixation, optimal healing and minimal complications (including the post-op "Popeye" deformity).

Challenges with a mini-open Subpectoral (Subpec) Approach

Greater stress riser for fracture risk	Subpec cortical drill holes for biceps tenodesis were shown to be a stress riser for humeral spiral fracture ; while suprapectoral (suprapec) cortical drill holes were shown to be significantly less of a stress riser. ¹
Greater reoperation, wound complication, and nerve injury rates	Open biceps tenodesis has shown a slightly greater complication rate in some studies, including the potential for more serious iatrogenic nerve complications. ²

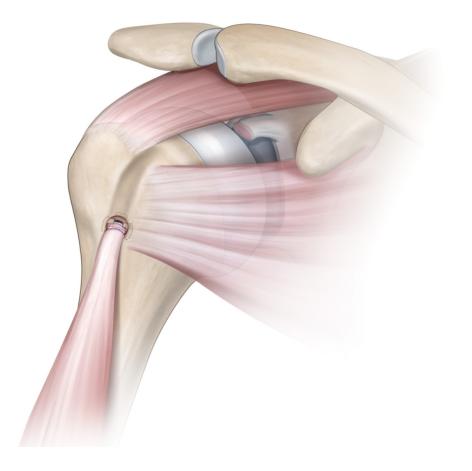
Challenges with Inlay Interference Screw Fixation

27% Failure Rate	27% of patients in the inlay group suffered postoperative popeye deformity after biceps tenodesis. ³ The increased incidence of Popeye deformities seen in the inlay group in studies is thought to be secondary to interference screws cutting into the tendon during insertion into the bone socket. ⁴
100% Of failures occur at bone-screw-tendon interface	In biomechanical study investigating the properties of a bone tunnel/suture construct, researchers observed that all the specimens in the interference screw group failed with tearing of the tendon at the bone-screw-tendon interface. ⁵

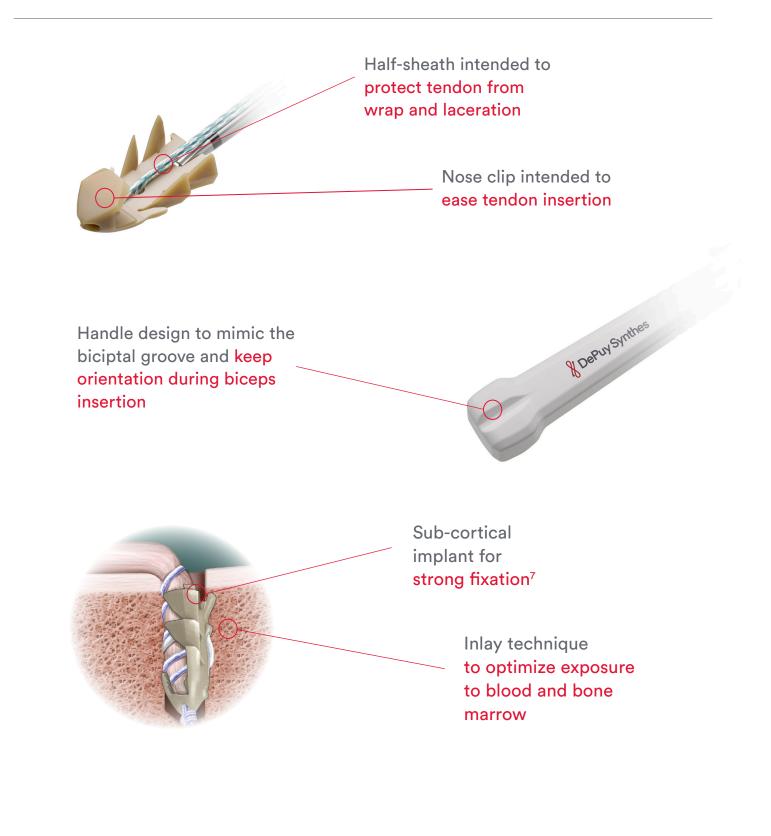
Challenges with Onlay Fixation

9.4%	In another study, which compared onlay techniques, 9.4% of patients in onlay group
Failure Rate	suffered postoperative failure (Popeye deformity) after tenodesis. ³

10-27 mm	Studied suture anchor onlay constructs have shown statistically significant tendon			
	elongation (10-27 mm on average) when compared to inlay interference screw constructs			
Tendon Elongation	(4 mm on average). ⁶			


The Suprapec Approach with TIGHT-N Anchor: New Technology using a Classic Technique

Benefits of Suprapec


- Reduced complication rates compared to subpec techniques²
- Less stress-riser for fractures compared to subpec techniques¹
- No significant difference in bicipital groove pain versus subpec techniques²
- Potentially less tissue damage with an arthroscopic vs. open approach²

Benefits of Inlay

- Inserting tendons into bone tunnels is a predominant technique used to heal and repair tendons and ligaments (ex: ACL reconstruction)
- The bicipital groove is designed to let the biceps tendon slide and not adhere to the cortical surface
- Exposure to blood and bone marrow may provide an optimal healing environment

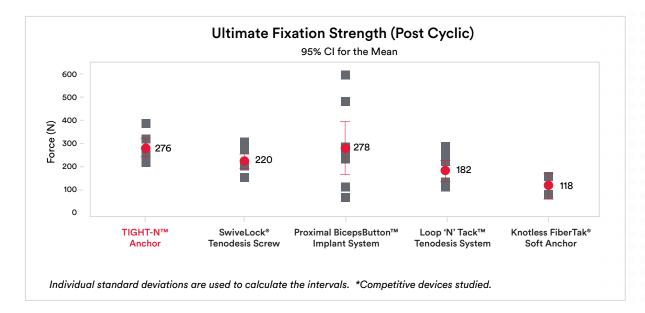
Product Design

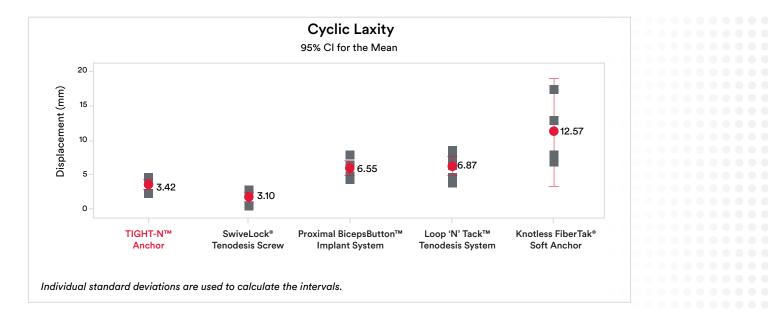
Indications

Shoulder

• Biceps tenodesis

Knee


- Medial patellofemoral ligament (MPFL) repair/ reconstruction
- Posterior oblique ligament (POL) repair
- Medial collateral ligament (MCL) repair
- Lateral collateral ligament (LCL) repair
- Anterolateral ligament (ALL) reconstruction
- Iliotibial (IT) band tenodesis


Product Performance

High-strength Fixation⁷

When compared to competitive devices studied, TIGHT-N Anchor showed consistent high-strength fixation.

Less displacement* and variability compared to studied competitive devices⁷

Less displacement and variability gives you the confidence that your tendon is going to stay in place.

*Except the SwiveLock Tenodesis System

Product Codes

TIGHT-N[™] Anchors

Code	Material	Size	Bone Tunnel Diameter	Implant Length	Drill Depth
208881	PEEK	Small	5.5 mm		18 mm +
208882	PEEK	Medium	7.0 mm	18 mm	cortical thickness +
208883	PEEK	Large	8.5 mm		knot stack

TIGHT-N[™] Instruments

Code	Description	Code	Description		
	200400 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		F		
	• • •	254729	Calibrated Passing Pin Drill Tip		
		Code	Description		
208886	Implant Sizer	Code	Description		
Code	Description				
		-			
		208891	Small Self-Piloting Reamer, 5.5 mm		
		208892	Medium Self-Piloting Reamer, 7.0 mm		
		208893	Large Self-Piloting Reamer, 8.5 mm		
08887	Small Cannulated Reamer, 5.5 mm				
08888	Medium Cannulated Reamer, 7.0 mm				
08889	Large Cannulated Reamer, 8.5 mm				

Learn more about the TIGHT-N[™] Anchor on our website

Rosen Sintes

References

- Arash A. Dini, Joshua E. Mizels, Sohale Sadeghpour, Michael J. O'Brien, Felix H. Savoie, Mark H. Getelman. Implant-Free Subpectoral Biceps Tenodesis Is Biomechanically at Higher Risk of Spiral Fracture of the Humerus Compared with Implant-Free Suprapectoral Biceps Tenodesis. Arthroscopy, Sports Medicine, and Rehabilitation, Volume 3, Issue 1, 2021, Pages e73-e78, ISSN 2666-061X. https://doi.org/10.1016/j.asmr.2020.08.011.
- Deng ZJ, Yin C, Cusano J, et al. Outcomes and Complications After Primary Arthroscopic Suprapectoral Versus Open Subpectoral Biceps Tenodesis for Superior Labral Anterior-Posterior Tears or Biceps Abnormalities: A Systematic Review and Meta-analysis. Orthop J Sports Med. 2020;8(8):2325967120945322. Published 2020 Aug 28. doi:10.1177/2325967120945322.
- Haidamous G, Noyes MP, Denard PJ. Arthroscopic Biceps Tenodesis Outcomes: A Comparison of Inlay and Onlay Techniques. Am J Sports Med. 2020;48(12):3051-3056. doi:10.1177/0363546520952357
- 4. Jackson GR, Meade J, Coombes K, et al. Onlay Versus Inlay Biceps Tenodesis for Long Head of Biceps Tendinopathy: A Systematic Review and Meta-analysis. J Am Acad Orthop Surg Glob Res Rev. 2022;6(12):e22.00255. Published 2022 Dec 9. doi:10.5435/JAAOSGlobal-D-22-00255
- Nels Sampatacos, Mark H. Getelman, Heath B. Henninger. Biomechanical comparison of two techniques for arthroscopic suprapectoral biceps tenodesis: interference screw versus implant-free intraosseous tendon fixation. Journal of Shoulder and Elbow Surgery. Volume 23, Issue 11, 2014. Pages 1731-1739, ISSN 1058-2746. https://doi.org/10.1016/j.jse.2014.02.027.
- Forsythe, Brian. A Radiostereometric Analysis of Tendon Migration following Arthroscopic and Mini-Open Biceps Tenodesis: Interference Screw confers Greater Construct Stability than Single Suture Anchor Fixation, with No Difference in Patient-Reported Outcomes. Paper presented at AOSSM Annual Meeting 2022.
- 7. DePuy Synthes. TIGHT-N™ Anchor Evidence Generation Test Summary. April 4, 2023. Windchill #501243771.

Please refer to the instructions for use for a complete list of indications, contraindications, warnings, and precautions. The third-party trademarks used herein are the trademarks of their respective owners.

DePuy Mitek, Inc. 325 Paramount Drive Raynham, MA 02767 T. +1 (800) 382-4682

www.depuysynthes.com

© DePuy Synthes 2023. All rights reserved. 250418-230607 DSUS